

Technology Roadmap, the R&D agenda & UK Capabilities

Neville Jackson

Chief Technology & Innovation Officer

Ricardo plc

NAIGT Organisation and Participants

The Automotive Council was formed following a recommendation from the NAIGT - A key objective is to define a UK Automotive Technology Strategy

Phase 1 (Nov-Dec '08)

- Develop a mutually agreed OEM "Product Roadmap" aimed at the reduction of passenger car CO₂ emissions in line with government targets
- Compile a high level Common Research Agenda to deliver the **Product Roadmap**

NAIGT

Co-ordinated by

Phase 2 (Mar-Sept '09)

Identify technical areas of existing UK strength, weakness and potential for future development

NAIGT Report Identify the activities that should be a focus for R&D investment and make strategic recommendations to UK funding bodies, to maximise the benefit to UK plc

Technology Strategy Board

Co-ordinated by

Phase 3 (Nov '09 on)

- Establish Technology Group within **Automotive Council**
- Identify strategic technology direction for "Automotive UK plc"
- Set short term objectives to drive technology development towards the Product Road Map

Automotive Council

Individual manufacturers will prioritise certain technologies to fit with brand values, but OEMs share a common view of a high level Technology Roadmap

- NAIGT initiative revealed that UK Passenger Car OEM's and associated Stakeholders have developed similar views on the potential rollout of low CO₂ technologies
- Recognition that a commonly agreed "OEM Consensus Roadmap" may be of assistance to the UK in prioritising its R&D investments in meeting CO₂ challenges

Key Points related to the OEM Consensus Roadmap

- OEMs share a common product technology roadmap and recognise the same technical and commercial barriers.
- Individual manufacturers will implement technologies which best address their own brand values and market sectors.
- In the near to medium term, improvement of conventional powertrains and transmissions can have a significant impact on fleet average CO₂ by providing moderate benefits for a large proportion of the fleet.
- In the medium to longer term it is anticipated that a technology shift to alternative powertrains and transmissions will be required to achieve the CO₂ reduction targets from transport. Supported by alternative fuel delivery including grid electricity and hydrogen.
- Both electrification and fuel cell vehicle technologies rely on the concurrent development of a "clean and sustainable" supply of energy

Individual manufacturers will prioritise certain technologies to fit with brand values, but OEMs share a common view of a high level Technology Roadmap

Consensus OEM Product Roadmap describes a longer term migration from Mild/Full hybrids to PHEV, EV or Fuel Cell vehicles

EU Fleet Average CO₂ 130 95 Targets (g/km) Replaced by PHEV or EV if/when: **Fuel Cell Ve** Electric energy storage Fue H₂ Infrastructure sufficient "battery" cost and life Mass Market EV Tec -- Niche EVs acceptable **Charging Infrastructure Energy Stora** Grid supply available and Plug-In Hybrid greener than fuel supply **Energy Storage Breakthrough Full Hybrid** Replaced by full hybrid if/when battery costs Micro/Mild Hybrid reduce sufficiently IC Engine and Transmission innovations (gasoline/diesel/gas/renewables/H₂) **Vehicle Weight and Drag Reduction** 2000 2010 2020 2030 2040

Long term low carbon *Commercial Vehicle & Off-Road* roadmap features parallel technology streams depending on duty cycle

The research required to deliver the consensus product roadmap has been outlined for three stages of investment

- Research requirements have been compiled with input and agreement from the organisations who developed the consensus OEM Product Roadmap
- Research is categorised according to six technical areas:
 - Propulsion technology
 - Energy storage technology
 - Vehicle efficiency technology
 - System control technology
 - **Energy & fuel supply** technology
 - Processes & tools
- The timeframe for research is defined in terms of three stages:
 - Short term: pre-competitive development, 5-10 years from production
 - **Medium term:** industrial research, 7-15 years from production
 - **Long term:** fundamental research, 10-20 years from production
- Timeframes determined by the available time to target product release, assuming that research starts now – at this stage was not connected to current UK capability

Common Research Agenda to deliver Consensus OEM Roadmap:

		SHORT TERM		MEDIUM TERM		LONG TERM		
		5 – 10 years from production		7 – 15 years from production		10 – 20 years from production		
		INDUSTRY				UNIVERSITIES		
Propulsion	•	IC engine optimisation	•	Higher efficiency IC engines	•	Super high efficiency motors		
	•	Boost systems for downsizing		Capacitive boost systems		(superconducting) New IC engines with 70%+ thermal		
	•	Flexible valve/actuation for		All electric actuation systems Optimised range extender engine		efficiency		
		engines/transmissions Low cost compact e-motors		Lower cost e-motor	•	Advanced heat energy recovery (e.g. thermoelectric)		
				Heat energy recovery (e.g. E-turbine)	•	Motor/Fuel Cell materials		
Energy Storage	•	Improved quality / durability 200+ Wh/kg & \$800/kW.h cost battery		Next gen batteries 300+ Wh/kg and \$500/kW.h cost	•	3 rd gen batteries 400+ Wh/kg & \$200/kW.h cost		
	•	systems	•	Flexible power elec. modules	•	New low cost solid state power		
		Low cost power electronics		Other forms of energy recovery (mechanical/chemical etc)		conversion systems		
						Hydrogen storage technology		
Vehicle	•	Lightweight structures and interiors	•	New vehicle classes and configurations	•	Flexible re-configurable multi-utility vehicle concepts		
	•	Low rolling resistance tyres / brakes	•	Combination of function to reduce		50% weight reduction from 2008		
Efficiency				weight / cost		· ·		
				Minimised weight / losses		Advanced aerodynamic concepts		
System		Information enabled control (Topology, V2V, V2I, traffic etc.)	•	Advanced information enabled control	•	Autonomous P/T and vehicle control integrated with active safety		
Control	•	Optimised vehicle energy mgmt.	•	Intelligent P/T and HVAC mgmt.				
	•	Intelligent thermal management						
Energy + Fuel Supply	•	Optimised 1st gen biofuels processes	•	Intelligent energy / re-fuelling infrastructure	•	3 rd gen biofuel processes		
	•	New 2 nd gen biofuel processes	•	(e.g. fast charge) Industrial scale demonstration of new 2 nd gen biofuel processes	•	2 nd gen industrial scale biofuel production infrastructure		
Processes + Tools	•	Process + delivery tool development and connectivity	•	Auto-optimisation methods using virtual systems	•	Artificial Intelligence to deliver complex multi-criteria system optimisation		

Source: An Independent Report on the Future of the Automotive Industry in the UK – New Automotive Innovation & Growth Team (NAIGT)_{RD.10/427101.1}

An in-depth industry consultation was carried out to establish the wider R&D capability in the UK using a survey and workshops

Objectives were to:

- Assess current levels of UK activity (research, development, supply chain base) and current technology maturity levels of R&D activities underway across CO₂-relevant technology areas
- Note UK strengths & opportunities
- Over 110 companies were invited to participate in the consultation via a questionnaire and 2 structured workshops
- Additionally, the UK's main public R&D funding bodies were approached for information on currently running and recently completed research projects within industry and academia
- From these different sources, the evidence collected of UK R&D activity was assessed against the requirements of the Consensus Roadmap for each of a range of 8 technology areas

Organisations contacted (by main activity area)

In addition, all organisations consulted via the questionnaire were invited to attend a one-day stakeholder workshop

Workshop objectives were to:

- Capture and validate evidence on UK capability and readiness status across short, medium and long term technology requirements to deliver the OEM product roadmap
- Reach consensus view of status of UK R&D capabilities and assess the potential for the UK R&D base to deliver to the future requirements of the OEM product roadmap
- Data from questionnaire used as basis for discussion:
 - matched to the research agenda required to deliver the OEM product roadmap
 - focused on UK capability for each technology area and technology category
- Facilitated discussions with groups of attendees:
 - validate information gathered to date
 - expand on evidence of UK R&D capabilities
 - evaluate UK capability to deliver short, medium and long term requirements

Clearly defined criteria were defined to judge the capability of the UK to deliver the short, medium and long term requirements of the roadmap

UK Capability Assessment Process – Applied Rating Criteria

Category	Short Term	Medium Term	Long Term			
Assessment	Requirements	Requirements	Requirements			
	Clear evidence of:	Clear evidence of:	Clear evidence of:			
	 Availability of required	 Strong R&D ongoing for required	 Strong university or other			
	technology at right	technology, on track to meet	fundamental R&D activities			
	development stage	Roadmap time scale	underway with good potential			
	 Significant number of substantial players & high level of reported activities 	Several substantial players with relevant projects	to meet long term Roadmap requirements • Appropriate industrial base in			
	 Existing manufacturing facilities with potential for meeting market demand in the short term 	 Some existing manufacturing presence with potential scale up to meet medium term requirements (scale up of existing facilities, partnerships, market entry from adjacent industries) 	place to develop & commercialise technology			
	 One of the above not fully met 	One of the above not fully met	 Limited fundamental R&D Potential to exploit expertise from other, relevant industries 			
	 Two or more of the above	 Two or more of the above not fully	 No evidence of relevant			
	not fully met	met	expertise			
	 Technology not required	 Technology not required for	 Technology not required for			
	for short term	medium term	long term			

A simple analysis was then carried out to give an initial indication of likely Return On Investment levels across different technology areas

1. Qualitative assessment of effort required to deliver roadmap requirement:

- Effort required for UK to meet the requirements of the consensus product roadmap for each technology category
- A qualitative rather than quantitative rating scale was utilised

2. Qualitative assessment of potential for UK benefit:

- The potential for UK benefit (value capture) was estimated by qualitatively rating the "overall market value" and the "UK value capture potential" for each technology category
- Overall rating for the potential UK benefit derived from two component ratings:
 - "overall market value" (size of global market opportunity)
 - "UK value capture potential" (proportion of this market likely captured by the UK)
- A relative rating scale was utilised

3. Overall assessment of indicative ROI potential:

 A summary qualitative assessment was then produced based on effort and benefit to give an indicative "return on investment" rating Phase 1 Phase 2 Phase 3

Existing or potentially strong UK capability
Strong UK capability in some aspects
Medium UK capability in some aspects
Capability not required for Roadmap

				•	,	•	1011			
	Technology Category		UK capability		Research	;t)	Qual. Ease of	Qual. Benefit to	Indicative "ROI"	
			М	L	Short	Medium	Long	Delivery	UK	I.C.
	FIE	Y	G	G	High pressures, more flexibility, hybrid app's	Design for biofuels		→	1	71
	Air handling	Υ	G	G	Boost systems for downsizing	Improved response, e.g. energy storage		7	7	→
	Friction reduction	Υ	Y	Υ	Components, lubricants	Materials, coatings, nano technology		→	→	→
Α	Heat energy recovery systems		G	Υ	-	E-turbines, secondary cycles	Thermoelectric devices	→	→	→
	Novel thermo cycles		Y	G	<u>-</u>	Alt. combustion modes (CAI, HCCI)	Novel concepts for very high efficiency	→		→
	Engines for HEV/PHEV		G	G	Simple, light engines for niche app's	Optimised engines		7	7	77
	Integrated engine design & development	G	G	G	Engine optimisation for biofuels	Extreme downsizing concepts		7	1	↑
	Electric motors	G	G	G	Low cost, compact	Lower cost	Super high eff., new materials	→	→	7
В	Hydrogen fuel cells		Υ	Y	Support to demonstrators	Efficiency, cost improvements	New MEA materials	Ψ	7	→
	Power electronics	Υ	G	G	Low cost	Flexible	High temp, new materials	→	→	7
С	Adv trans fluids	G	G	G	Fluids for low friction	Nano technology		→	71	71
	Trans concepts for HEV / PHEV / EV	Υ	Υ	Υ	Optimised calibration for HEVs	Multi-speed for EVs, Low cost for HEV		→	→	→
	Battery pack int.	G	G	G	Thermal control, safety/crash protection			↑	→	↑
D	H ₂ storage tech.		Υ	Y		Cost reduction	Alt. H ₂ storage (solid state etc.)	Ψ	7	→
	Mechanical energy storage tech.	G	G	G	Tech demonstration for benefits			7	7	↑
F	Lightweight structures	G	G	G	Lightweight steel, aluminium	Carbon fibre composites	Smart components & materials	→	↑	↑
	New vehicle classes		Y	G	-	Design for EVs, personal mobility	Modular vehicles	7	→	→
	Adv. p'train control – software	G	G	G	Model-based multivariable control	Cylinder p based ctrl, integrated powertrain ctrl	Adaptive in-cycle model-based control	↑	→	→
	Vehicle energy mgmt	G	G	G	Thermal mgt, e-ancillaries	Energy mgt strategy PHEV,EV	Energy mgt strategy fuel cells	↑	→	7
F	Driver info systems	G	G	G	Economy aids	Innovative driver interaction methods		→	→	7
	ITS		G	G	Info enabled control: topology, V2I	Electronic horizon: incl. traffic, V2V		7	7	7
	Autonomous vehicle control		G	G		X-by-wire	Autonomous control w. active safety integration	→	Ä	→
	2 nd gen biofuels		G	G	New 2 nd gen process	Demo 2 nd gen process		Ψ	→	→
	3 rd gen biofuels		G	G	-	-	New 3 RD gen processes	Ψ	→	→
G	Electrical infra.		G	G	Smart metering / charge points	Future charging options (e.g. fast charge)	Smart grid / energy mix	Ψ	1	7
	H ₂ infrastructure			Υ	-	-	H ₂ fuelling options & infra. strategy	Ψ	→	→
	Advanced process tools	G	G	G	Virtual prototyping		1	7	→	7
	Integrated tool-chains	Υ	G	G	Multi-domain modelling	Standards for tool integration	1	71	→	7
Н	Auto-optimisation methods	Υ	G	G	Multi-attribute optimisation		1	7	→	7
	Advanced testing methods & equip	G	G	G	Design of Experiments methods		1	7	<u>u</u>	→
		_	4	4						4.4

Source: Ricardo analysis

Conclusions and Next Steps

- Individual manufacturers will prioritise certain technologies to fit with brand values, but
 OEMs share a common view of a high level Product Roadmap
- An initial view of the research required to deliver the consensus Product Roadmap has been defined based on 6 categories and short/medium/long term priorities
- An evidence base has been developed for the current capability base of the UK automotive industry
- It has revealed an industry which under the correct conditions can compete effectively in the future global marketplace for low carbon vehicle technologies
- This evidence base has been extensively peer reviewed
- The study is being used by the Automotive Council to inform their strategic decisionmaking around prioritisation of UK automotive technology investment
- The Technology Group of the Automotive Council is now focused on a number of specific themes to support development of a Technology Strategy